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Distributed Storage

Why is distributed storage important for Data Intensive
Computing?

• Researchers often are not at the same location as the
data source

• Compute cycles are often not at the same location as
the data source or the data archive
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Distributed Storage

Other Advantages of Distributed Storage:

♦ sharing of resources

♦ fault tolerance / load balancing through replicated data
at multiple sites, where a fault might be:

- host failure
- disk failure
- network failure
- software fault
- network congestion
- excessive CPU load

♦ added flexibility: provides the ability to move the data to
the compute cycles, or move the compute cycles to the
data, depending on network speed
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Distributed Storage
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Example Architecture for On-line Data Sources

A prototype architecture has evolved from our experiences:
• distributed satellite image processing in MAGIC testbed
• on-line angiography (x-ray video) systems for Kaiser

Hospital
• simulated on-line HENP detectors

Key features of the architecture:
• very high-speed cache that is distributed, scalable, and

dynamically configurable
• common, low-level, high data rate interface that supports

various application I/O semantics
• high-speed tertiary storage interface
• data cataloguing and access system
• distributed management of strong access control
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Example Architecture
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Example Architecture

♦ Advantages of this architecture:

• first level processing can be done using resources at
the collaborators sites (this type of experiment typically
involves several major institutions)

• large tertiary storage systems exhibit substantial
economies of scale, and so using a large tertiary
storage system at, say, a supercomputer center, should
result in more economical storage, better access
(because of much larger near-line systems - e.g. lots of
tape robots) and better media management.
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Distributed Storage Applications

Background:

♦ We first developed a distributed storage system, called
the DPSS (Distributed Parallel Storage System) as part of
the DARPA-sponsored MAGIC Gigabit Network Testbed
(see: http://www.magic.net).

♦ The prototype high-speed application for this system
was TerraVision, developed at SRI.

♦ TerraVision uses tile images and digital elevation models
to produce a 3D visualization of landscape.
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Distributed Storage Applications
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Distributed Storage Applications

Medical Imaging Data

♦ The DPSS was used with an LBNL/Kaiser Permanente
collaboration focused on connecting remote, on-line
instrument systems to “real-time” digital libraries.

♦ System characteristics:

• automatic generation of metadata

• automatic cataloguing of the data and the metadata as
the data is received

• transparent management of tertiary storage systems
where the original data is archived (via Unitree NFS
interface)

• facilitation of cooperative research by providing
specified users at local and remote sites immediate as
well as long-term access to the data
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Distributed Storage Applications

♦ System characteristics (cont.):

• mechanisms to incorporate the data into other
databases or documents

• cardio-angiography data was collected directly from a
Phillips scanner in the San Francisco Kaiser hospital
Cardiac Catheterization Laboratory — when the data
collection for a patient is complete (about once every
20–40 minutes), 500–1000 megabytes of digital video
data was sent across the ATM network to the WALDO
system at LBNL which makes the data available to
physicians in other Kaiser hospitals

• this automated process goes on 8–10 hours a day
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Distributed Storage Applications
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Distributed Storage Applications

High Energy and Nuclear Physics Data

♦ Data source: The STAR detector at RHIC (Brookhaven
National Lab).

• This detector puts out a steady state data stream of 20-
40 MBytes/second.

♦ This application requires a data handling architecture
capable of supporting the processing and storage of
over 2 TB / day:
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Distributed Storage Applications
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Distributed Storage Applications
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Distributed Storage Applications

Current ST AF/DPSS Performance
♦ A recent set of experiments were conducted over the

National Transparent Optical Network testbed — eight
2.4 gigabit/sec data channels around the San Francisco
Bay.

♦ The application network was IP over OC-12 (622 Mbit/
sec) ATM.

♦ An application running on a Sun Enterprise-4000 SMP at
SLAC (Palo Alto) read data from four distributed disk
servers at LBNL (Berkeley), parsed the XDR records and
placed the data into the application memory.
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Distributed Storage Applications
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Distributed Storage Applications

♦ Results:

• each DPSS server transfer rate is 14.25 MBytes/sec

• OC-12 receiver was able read data from 4 servers in
parallel at 57 MBytes/sec

- this is the rate of data delivered from datasets in a
distributed cache to the remote application memory,
ready for analysis algorithms to commence
operation.

• this is equivalent to 4.5 TeraBytes/day!

• latency for a single 64 KByte data block is 25 ms, so
pipelining is very important
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Distributed Parallel Storage System

Design Goals:

♦ support data-intensive applications

♦ provide very high data throughput
• parallelism at every level, including disk, SCSI bus, network,

and server

♦ high-speed WAN aware

♦ scalable
• throughput and capacity

♦ economical
• use only low-cost commodity hardware components

♦ location transparency
• location of DPSS servers is transparent to the application
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DPSS

DPSS Architecture:

♦ A dynamically configurable network-striped disk array
designed to supply high speed data streams to other
processes in the network

♦ Provides the functionality of a single, very large,
random-access, block-oriented I/O device (i.e.: a large
virtual disk)

♦ At the user level, it is a semi-persistent cache of named
data-objects

♦ At the storage level, it is a logical block server

♦ Allows client applications complete freedom to
determine optimal data layout, replication, and dynamic
reconfiguration

♦ The DPSS is NOT a reliable tertiary storage system
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DPSS

Implementation:

♦ zero memory copies of data blocks, and is all user level
code

♦ runs on Solaris, IRIX, DEC Unix, Linux, FreeBSD, Solaris
X86

♦ very large logical address/name space (16 bytes)

♦ highly distributed, a high degree of parallelism at every
level, and highly pipelined

♦ data blocks are declustered across both disks and
servers to maximize parallelism

♦ supports parallel reading and writing

♦ TCP Transport (UDP data transfers also supported)

♦ highly instrumented
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DPSS

Architecture for Distributed-Parallel Storage System
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DPSS

logical to
physical
mapping

disk servers

disk servers

disk servers

b
u
f
f
e
r

various
access

semantic

c
l
i
e
n
t

DPSS

requests

data

Distributed-Parallel Storage System Model (Reading)



25 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

generate block
map entries

disk servers

b
u
f
f
e
r

block
placemen

t

c
l
i
e
n
t

DPSS model for high-speed writing



26 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS
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DPSS

♦ Typical DPSS implementation
- 5 UNIX workstations (e.g. Sun Ultra I0s, Pentium 400)
- 4 - 6 Ultra-SCSI disks on 2 SCSI host adaptors
- a high-speed network (e.g.: ATM or 100 Mbit

ethernet)

• This configuration can deliver an aggregated data
stream to an application at about 500 Mbits/s (62 MBy/s)
using these relatively low-cost, “off the shelf”
components by exploiting the parallelism of:

- five hosts,
- twenty disks,
- ten SCSI host adaptors
- five network interfaces
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DPSS

♦ Sample Costs:

• server host = Sun Ultra 10S: $5000
- throughput = 11 - 14 MB/sec

• disk = 18 GB Ultra-wide Seagate Cheetah: $1500

• Note that cost is mainly dominated by disk price

TABLE 1.

Throughput Capacity Configuration Cost
10 MB/sec 33 GB 1 server, 2 disks $8K
50 MB/sec 165 GB 5 servers, 10 disks $40 K
50 MB/sec 1 TB 5 servers, 64 disks $121 K

100 MB/sec .5 TB 10 servers, 32 disks $98 K
100 MB/sec 1 TB 10 servers, 64 disks $146 K
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Other Types of Distributed Storage

Other systems that provide distributed storage capabilities:

• AFS

• DCE / DFS

These system provide full file system functionality, plus
security and scalablity.

But, they do not provide enough throughput for data
intensive applications:

• can’t stripe a file across several servers
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Next Generation Architecture

The next step is to add the following components to this
data handling architecture:

• security

• middleware
- Globus

• global naming
- URN system
- SRB from SDSC

• Other “computational grid” components
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Next Generation Architecture
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Next Generation Architecture
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Part II: Performance Analysis Tools
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Overview
♦ The Problem:

When building data intensive distributed services, we often
observe unexpectedly low network throughput and/or high
latency - the reasons for which are usually not obvious.

The bottlenecks can be in any of the following
components:

- the applications
- the operating systems
- the device drivers, the network adapters on either the

sending or receiving host (or both)
- the network switches and routers, and so on

♦ The Solution:
Highly instrumented systems with precision timing
information and analysis tools
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Motivation

There are virtually no behavioral aspects of widely
distributed applications that can be taken for granted - they
are fundamentally different from LAN-based distributed
applications.

• Techniques that work in the lab frequently do not work
in a WAN environment (even a testbed network)

To characterize the wide area environment we have
developed a methodology for detailed, end-to-end, top-to-
bottom monitoring  and analysis of significant events
involved in distributed systems data interchange.

• This has proven invaluable for isolating and correcting
performance bottlenecks, and even for debugging
distributed parallel code.
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NetLogger

♦ We have developed the NetLog ger Toolkit: a set of tools
to aid in creating graphs that trace a data request
throughout a distributed system.

• NetLogger makes it easy to modify distributed
applications to log interesting events at every critical
point in a distributed system.

• NetLogger also includes tools for host and network
monitoring.

♦ The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system
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NetLogger

♦ Logged events are correlated with system behavior to
characters the performance of the system during actual
operation

• facilitates bottleneck identification

♦ Using “life-lines” to visualize the data flow is the key to
easy interpretation of the results.

♦ We believe this type of monitoring is a critical
component to building reliable high performance data
intensive systems
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NetLogger
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Netlogger Components

♦ Common log format

♦ Application libraries for generating NetLogger Messages
•  Can send log messages to:

- file
- syslogd
- host/port (netlogd)

• C, C++ and Java are currently supported

♦ Event Visualization tools

♦ Management Agents

♦ Modified Unix network and OS monitoring tools to log
“interesting” events using the same log format

- netstat , vmstat , and tcpdump modified output results
in the NetLogger log format
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NetLogger

NetLogger log format:

We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

- LVL is the severity level (Emergency, Alert, Error,
Usage, etc.)

• followed by optional user defined fields

NetLogger adds these required fields:
• NL.EVNT, a unique identifier for the event being logged. i.e.:

DPSS_SERV_IN, VMSTAT_USER_TIME, NETSTAT_RETRANSSEG
• NL.SEC, and NL.USEC, which are the seconds and

microseconds from the Unix gettimeofday  system call
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NetLogger

Sample NetLogger ULM event:
DATE=19980430133038 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
NL.SEC=893968238 NL.USEC=55784 SEND.SZ=49332

This says program named testprog  on host foo.lbl.gov
performed event named SEND_DATA, size = 49332 bytes, at
the time given.

User-defined data elements (any number) are used to store
information about the logged event - for example:

NL.EVNT=SEND_DATA SEND.SZ=49332
- the number of bytes of data sent

NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
- the number of TCP retransmits since the previous

event
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NetLogger

NetLogger API:

Open calls:
NLhandle   *lp = NULL;

/* log to a local file */
lp = NetLoggerOpen(NL_FILE, program_name, log_filename,
                   NULL, 0);
/* log to syslog */
lp = NetLoggerOpen(NL_SYSLOG, program_name, NULL, NULL, 0);

/* log to “netlogd” on the specified host/port */
lp = NetLoggerOpen(NL_HOST, program_name, NULL, hostname,
                   DPSS_NETLOGGER_PORT);
/* log to memory, then flush to host/port */
lp = NetLoggerOpen(NL_HOST_MEM, program_name, NULL, hostname,
                   DPSS_NETLOGGER_PORT);

Write the log event:
 NetLoggerWrite(lp, "EVENT_NAME",  "F1=%d F2=%d F3=%d
          F4=%.2f", data1, data2, string, fdata);
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NetLogger

Sample Code:
/* log to a local file */
lp = NetLoggerOpen(method, progname, log_filename, NULL, 0);

while (!done)
{
    NetLoggerWrite(lp, "EVENT_START", "TEST.SIZE=%d", size);

    /* perform the task to be monitored */
    done = do_something(data, size);

    NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);
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NLV

NetLogger Visualization Tools

Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems.

We have developed a tool called nlv  (NetLogger
Visualization).

nlv  functionality:
• can display several types of NetLogger events at once
• user configurable: which events to plot, and the type of plot

to draw (lifeline, load-line, or point)
• play, pause, rewind, slow motion, zoom in/out, and so on
• nlv  can be run post-mortem, or in “real-time”

Other NetLogger tools to analyze log files:

• perl  scripts to extract information from log files

• gnuplot  to graph the results
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NLV
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NLV
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Network Time Protocol

♦ For NetLogger timestamps to be meaningful, all systems
clocks must be synchronized.

♦ NTP is used to synchronize time of all hosts in the
system.

• NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

♦ Must have NTP running on one or more primary servers,
and on a number of local-net hosts, acting as secondary
time servers.
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NTP

♦ Purpose of NTP
• conveys timekeeping information from the primary servers

to other time servers via the Internet
• cross-checks clocks and mitigates errors due to equipment

or propagation failures

♦ Host time servers will synchronize via another peer time
server, based on the following timing values:
• those determined by the peer relative to the primary

reference source of standard time
• those measured by the host relative to the peer

♦ NTP provides not only precision measurements of offset
and delay, but also definitive maximum error bounds, so
that the user interface can determine not only the time,
but the quality of the time as well.
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Running NTP:

• All hosts run the xntpd daemon, which synchronizes
the clocks of each host both to GPS-based time servers
and to each other.

• This allows us to synchronize the clocks of all hosts to
within about 250 microseconds of each other, but...

- systems have to stay up for a significant length of
time for the clocks to converge to 250 µs

- best to have a time server on the same network as all
hosts

- many different sys admins (harder to synchronize
than clocks)

• In practice, clock synchronization of 1ms is good
enough
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NetLogger Analysis of the DPSS

DPSS life-lines:

• each line represents the history of a data block as it
moves through the end-to-end path

• data requests are sent from the application every 200
ms (the nearly vertical lines starting at app_send
monitor point)

• initial single lines fan out as the request lists are
resolved into individual data blocks ( server_in )
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NetLogger Analysis of the DPSS

♦ Analysis of the data block life-lines shows, e.g. (see next
figure):
A: if two lines cross in the area between start read  and end

read, this indicates a read from one disk was faster than a
read from another disk

B: all the disks are the same type, the variation in read times
are due to differences in disk seek times

C: average time to move data from the memory cache into the
network interface is 8.65 ms

D: the average time in disk read queue is 5 ms
E: the average read rate from four disks is 8 MBy/sec
F: the average send rate (receiver limited, in this case) is 38.5

Mb/sec.
G: some requested data are found in the cache (were read from

disk, but not sent in previous cycle because arrival of new
request list flushes write queue)
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NetLogger Analysis of the DPSS
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NetLogger Analysis of the DPSS

Two server, ATM LAN Event lifelines
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NetLogger Analysis of the DPSS

Other NetLogger Results: A DPSS scaling experiment:

• 10 clients accessing 10 different data sets
simultaneously

• show that all clients get an equal share of the DPSS
resources
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NetLogger Analysis of the DPSS

Correct operation of 10 parallel (simultaneous) processes reading 10 different data sets
from one DPSS (each row is one process, each group is a request for 10 Mbytes of data,
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A Case Study: TCP in the Early MAGIC Testbed

The Problem:

♦ DPSS and TerraVision were working well in a LAN
environment, but failing to deliver high (even medium!)
data rates to TerraVision when operated in the MAGIC
WAN.

♦ We suspected that the ATM switches were dropping
cells, but they reported no cell loss.

♦ Network engineers claimed that the network was working
“perfectly”. For testing they were using network
performance tools such at ttcp  and netperf , which are
somewhat useful, but don’t model real distributed
applications, which are complex, bursty, and have more
than one connection in and/or out of a given host at one
time.
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MAGIC

Control test: 2 servers over ATM LAN
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MAGIC

♦ TerraVision image tiles are distributed across DPSS
servers on the MAGIC network at the following sites:

- EROS Data Center, Sioux Falls, SD;
- Sprint, Kansas City, MO;
- University of Kansas, Lawrence, KS;
- SRI, Menlo Park, CA;
- LBNL, Berkeley, CA
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MAGIC

MAGIC WAN experiment:

♦ Three disk server configuration DPSS gave the results
shown below:

♦ What was happening in this experiment is that TCP’s
normal ability to accommodate congestion is being
defeated by an unreasonable network configuration:
• the final ATM switch where the three server streams come together had a

per port output buffer of only about 13K bytes
• the network MTU (minimum transmission unit) is 9180 Bytes (as is typical

for ATM networks)
• three sets of 9 KBy IP packets were converging on a link with less than

50% that amount of buffering available, resulting in most of the packets
(roughly 65%) being destroyed by cell loss at the switch output port

The next generation of ATM switches (e.g.: Fore LC switch modules) had much
more buffering: 32K cells (1500 KB), and this problem went away.
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MAGIC

The MAGIC Network Performance Test Configuration
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MAGIC

time (ms)
3,000 4,000 5,0001,000 2,0000

master in

app send

app receive

TCP retrans

master out

server in

start write

end read

start read

Three servers, ATM WAN, SS-10s as servers, tv_sim on SGI Onyx

“tvlog.edc”
“tvlog.uswest”

“tvlog.tioc”
“edc.serv_flush.log”

“tioc.serv_flush.log”

“uswest.serv_flush.log”
“edc.net.tcp.retrans.log”
“tioc.net.tcp.retrans.log”

“uswest.net.tcp.retrans.log”



63 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of HENP Application
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 For more information see:

http://www-didc.lbl.gov/DPSS
http://www-didc.lbl.gov/NetLogger


